Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(5): 2260-2270, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252093

RESUMEN

Multiple pieces of evidence have shown that prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) is closely related to adverse birth outcomes for infants. However, difficult access to human samples limits our understanding of PFASs transport and metabolism across the human placental barrier, as well as the accurate assessment of fetal PFASs exposure. Herein, we assess fetal exposure to 28 PFASs based on paired serum, placenta, and meconium samples. Overall, 21 PFASs were identified first to be exposed to the fetus prenatally and to be metabolized and excreted by the fetus. In meconium samples, 25 PFASs were detected, with perfluorooctane sulfonate and perfluorohexane sulfonic acid being the dominant congeners, suggesting the metabolism and excretion of PFASs through meconium. Perfluoroalkyl sulfonic acids might be more easily eliminated through the meconium than perfluorinated carboxylic acids. Importantly, based on molecular docking, MRP1, OATP2B1, ASCT1, and P-gp were identified as crucial transporters in the dynamic placental transfer of PFASs between the mother and the fetus. ATSC5p and PubchemFP679 were recognized as critical structural features that affect the metabolism and secretion of PFASs through meconium. With increasing carbon chain length, both the transplacental transfer efficiency and meconium excretion efficiency of PFASs showed a structure-dependent manner. This study reports, for the first time, that meconium, which is a noninvasive and stable biological matrix, can be strong evidence of prenatal PFASs exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Recién Nacido , Embarazo , Humanos , Femenino , Placenta , Meconio/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Alcanesulfónicos/metabolismo , Ácidos Carboxílicos/metabolismo
2.
Huan Jing Ke Xue ; 42(9): 4275-4286, 2021 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-34414725

RESUMEN

In this study, total phosphorus (TP) and the phosphorus (P) fractions in the water and surface sediments of the Baotou Nanhai wetland in China were determined using molybdenum blue/ascorbic acid spectrophotometry and continuous extraction methods. An APCS-MLR receptor model was combined with correlation analysis (CA) and principal component analysis (PCA) to identify and quantify the pollution sources. The results showed ① differences in the pollution level of phosphorus between the surface sediments and water. The contribution of dissolved inorganic phosphorus (DIP) to TP in the water (WTP) was the lowest, while the contribution of calcium-bound phosphorus (HCl-P) to TP in the surface sediments (STP) was the largest in the study area. The surface sediments of the Nanhai Lake (L area) and the wetland plant area (P area) exhibited high bioavailability and the potential for releasing phosphorus into the water, which could result in eutrophication and is therefore of concern. ② The APCS-MLR receptor model indicated that the main pollution sources of phosphorus were industrial wastewater and domestic sewage (29.07%), and pesticides and fertilizers (29.00%). In addition, the degradation of animal and plant residues (18.49%) also contributed to pollution in the study area.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...